
IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Radical and Primary Ideals

In this lecture, we will discuss two generalizations of prime ideals, namely, radical and
primary ideals. Although radical and primary ideals have intrinsic value by themselves,
the main purpose of this lecture is to settle the ground for the Noether-Lasker Theorem
on primary decompositions, which we shall prove in the next lecture. Throughout this
lecture, R is a commutative ring with identity.

Radical Ideals. Recall that every proper ideal of R is contained in a maximal ideal.
The radical (or nilradical) of a proper ideal I of R, denoted by Rad I, is the intersection
of all prime ideals of R containing I. In addition, RadR = R. The ideal I is radical if
Rad I = I. Clearly, every prime ideal is radical. The converse does not hold: indeed,
6Z is a radical ideal of Z that is not prime.

Example 1. In Z, the radical of 18Z is 2Z ∩ 3Z = 6Z and the radical of both 9Z and
27Z is the ideal 3Z.

Proposition 2. Let R be a commutative ring with identity, and let I, I1, . . . , In be
ideals of R. Then the following statements hold.

(1) Rad I = {r ∈ R : rn ∈ I for some n ∈ N}.
(2) Rad(Rad I) = Rad I.

(3) Rad I1 · · · In = Rad
(⋂n

j=1 Ij
)
=

⋂n
j=1Rad Ij, and so Rad In = Rad I.

Proof. (1) If I = R, then the desired equality clearly holds. So we assume that I is
a proper ideal. Set J := {r ∈ R : rn ∈ I for some n ∈ N}, and let us verify that
J = Rad I. If r ∈ J , then for every prime ideal P containing I, there is an n ∈ N
such that rn ∈ P and, therefore, r ∈ P . This implies that J ⊆ Rad I. To argue the
reverse inclusion, take r ∈ R \ J . Now set M := {rn + a | n ∈ N and a ∈ I}, and note
that M is a multiplicative subset of R that is disjoint from I. Therefore I is contained
in a prime ideal P that is disjoint from M . Observe that r /∈ P , which implies that
r /∈ Rad I. As a result, Rad I ⊆ J .

(2) If r ∈ Rad(Rad I), then it follows from part (1) that rm ∈ Rad I for some
m ∈ N and also that rmn = (rm)n ∈ I for some n ∈ N, whence r ∈ Rad I. Thus,
Rad(Rad I) ⊆ Rad I. The reverse inclusion follows from the fact that I ⊆ Rad I.
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(3) Since I1 · · · In ⊆
⋂n

j=1 Ij, we see that Rad I1 · · · In ⊆ Rad
(⋂n

j=1 Ij
)
. In addition,

as
⋂n

j=1 Ij ⊆ Ii for every i ∈ N, the inclusion Rad
(⋂n

j=1 Ij
)
⊆

⋂n
j=1 Rad Ij holds.

Finally, if r ∈
⋂n

j=1 Rad Ij, then part (1) ensures the existence of m1, . . . ,mn ∈ N such

that rmj ∈ Ij for every j ∈ J1, nK, and so rm1+···+mn ∈ I1 · · · In, which implies that
r ∈ Rad I1 · · · In. Hence

⋂n
j=1Rad Ij ⊆ Rad I1 · · · In. The second statement is a special

case of the first one. □

As a consequence of part (1) of Proposition 2, we obtain the following corollary.

Corollary 3. Let R be a Noetherian commutative ring with identity. Then for every
ideal I there exists n ∈ N such that (Rad I)n ⊆ I.

Proof. Let I be an ideal of R. Since R is a Noetherian ring, we can write Rad I =
Ra1 + · · · + Rak for some a1, . . . , ak ∈ Rad I. By virtue of Proposition 2, we can
take n1, . . . , nk such that an1

1 , . . . , ank
k ∈ I. Set n = n1 + · · · + nk. Observe that

every element of (Rad I)n is generated by elements of the form am1
1 · · · amk

k for some
m1, . . . ,mk ∈ N0 with m1 + · · · +mk = n, in which case, mi ≥ ni for some i ∈ J1, kK
and so am1

1 · · · amk
k ∈ Rani

i ⊆ I. Hence (Rad I)n ⊆ I. □

It follows as an immediate consequence of Corollary 3 that in a Noetherian ring with
identity every ideal contains a power of its radical. Here is a related result.

Proposition 4. Let R be a Noetherian ring with identity. Then every radical ideal
of R is the intersection of finitely many prime ideals.

Proof. Suppose, by way of contradiction, that the set S consisting of each radical
ideal of R that cannot be written as an intersection of finitely many prime ideals is
nonempty. Since R is a Noetherian ring, there is a maximal element I in S . Clearly, I
cannot be a prime ideal. So we can take x, y ∈ R \ I such that xy ∈ I, and then we
can easily argue that I = Rad(I + Rx) ∩ Rad(I + Ry) (see Exercise 3). Since both
Rad(I+Rx) and Rad(I+Ry) strictly contain I, neither Rad(I+Rx) nor Rad(I+Ry)
belong to S , and so they are both intersections of finitely many prime ideals. This
implies that I can also be written as an intersection of finitely many prime ideals,
contradicting that I is an element of S . □

Recall that r ∈ R is called nilpotent if rn = 0 for some n ∈ N. The ring R is called
reduced if its only nilpotent element is 0. The following corollary can be easily deduced
from Proposition 2(1).

Proposition 5. Let R be a commutative ring with identity. An ideal I of R is radical
if and only if R/I is a reduced ring.

Proof. This follows immediately as for all r ∈ R and n ∈ N, the equality (r + I)n = I
holds if and only if rn ∈ I. □

Radicals are preserved under localization, as the following proposition indicates.
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Proposition 6. Let R be a commutative ring with identity, and let S be a multiplicative
subset of R. Then RadS−1I = S−1Rad I.

Proof. By definition, RadS−1I is the intersection of all the prime ideals in S−1R con-
taining the ideal S−1I, that is, all prime ideals of the form S−1P , where P ∈ Spec(R)
with I ⊆ P (as S−1I ⊆ S−1P if and only if I ⊆ P ). Now the fact that localization
preserves intersections guarantees that

S−1Rad I = S−1
( ⋂
P∈Spec(R)

I⊆P

P
)
=

⋂
P∈Spec(R)

I⊆P

S−1P = RadS−1I.

□

Primary Ideals. A proper ideal Q of R is called primary if whenever rs ∈ Q for some
r, s ∈ R, the fact that r /∈ Q implies that sn ∈ Q for some n ∈ N. Clearly, every prime
ideal is primary. The converse does not hold even in Z; for instance, 4Z is a primary
ideal that is not prime. We can easily characterize primary ideals in terms of their
quotients.

Proposition 7. Let R be a commutative ring with identity. A proper ideal Q of R is
primary if and only if each zero-divisor in R/Q is nilpotent.

Proof. Fix a proper ideal Q of R. If Q is not a primary ideal, then we can take r, s ∈ R
with rs ∈ Q and r /∈ Q such that sn /∈ Q for any n ∈ N. In this case, it is clear that
s + Q is a zero-divisor in R/Q that is not nilpotent. On the other hand, if for some
s ∈ R, the element s + Q of R/Q is a zero-divisor that is not nilpotent, then after
taking r ∈ R \Q with (r +Q)(s+Q) = Q, we see that rs ∈ Q but r /∈ Q and sn /∈ Q
for any n ∈ N, whence Q is not a primary ideal. □

Proposition 7, in tandem with Proposition 5, immediately implies the following.

Corollary 8. In a commutative ring with identity, an ideal is prime if and only if it
is primary and radical.

Example 9. Let mZ be a primary ideal of Z, and let p be a prime dividing m. Write
m = pkm′ for some k ∈ N such that p ∤ m′. Observe that pkm′ ∈ mZ and m′ /∈ mZ.
Thus, the fact that mZ is primary ensures that some power of pk belongs to mZ; that
is, m divides a power of pk. This implies that m = pk. Hence each primary ideal of Z
has the form pkZ for some p ∈ P and k ∈ N. On the other hand, it is clear that all
ideals of the form pkZ, where p ∈ P and k ∈ N, are primary.

Take a primary ideal in Z, namely pkZ, where p ∈ P and k ∈ N. Observe that
Rad pkZ = pZ, which is a prime ideal. This is not a coincidence, as the following
proposition indicates.
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Proposition 10. Let R be a commutative ring with identity, and let Q be an ideal
of R. Then the following statements hold.

(1) If Q is primary, then RadQ is prime.

(2) If RadQ is maximal, then Q is primary.

(3) If M is a maximal ideal such that Mn ⊆ Q ⊆ M for some n ∈ N, then Q is
primary and RadQ = M .

Proof. (1) Since Q is a proper ideal, so is RadQ. Take r, s ∈ R such that rs ∈ RadQ
and r /∈ RadQ. Then there is an n ∈ N with rnsn ∈ Q. As rn /∈ Q and Q is primary,
we can choose an m ∈ N with snm = (sn)m ∈ Q, which implies that s ∈ RadQ. Thus,
RadQ is prime.

(2) After replacing R by R/Q, we can assume that M := Rad (0) is a maximal ideal
of R, and we only need to verify that every zero-divisor of R is nilpotent. Since M
is contained in every prime ideal, it must be the only prime ideal of R. Now if z is a
zero-divisor of R, then Rz is a proper ideal of R, and so Rz ⊆ M . Thus, z ∈ M , which
means that z is nilpotent.

(3) Since Q ⊆ M , it follows that RadQ ⊆ RadM = M . On the other hand, Mn ⊆ Q
implies that M ⊆ RadQ by part (1) of Proposition 2. As a result, RadQ = M , and
so Q is primary by part (2). □

Let P be a prime ideal of R. An ideal Q is called P -primary if Q is primary and
RadQ = P .

For a multiplicative set S of R, we know that I 7→ S−1I yields a one-to-one corre-
spondence between the prime ideals of R disjoint from S and the prime ideals of S−1R.
A similar result holds for primary ideals.

Proposition 11. Let R be a commutative ring with identity, and let S be a multiplica-
tive subset of R. Prove the following statements.

(1) If P is a prime ideal disjoint from S and Q is a P -primary ideal of R, then
S−1Q is an S−1P -primary ideal of S−1R.

(2) I 7→ S−1I induces a bijection between the set of primary ideals of R disjoint
from S and the set of primary ideals of S−1R.

Proof. (1) Let P be a prime ideal of R disjoint from S, and let Q be a P -primary
ideal. Suppose that (r1/s1)(r2/s2) ∈ S−1Q for some r1, r2 ∈ R and s1, s2 ∈ S while
r1/s1 /∈ S−1Q. Then (r1r2s3 − r3s1s2)s4 = 0 for some r3 ∈ Q and s3, s4 ∈ S, and
so r1r2s3s4 ∈ Q. Therefore, as Q is primary, the fact that no positive power of s3s4
belongs to Q ensures that r1r2 ∈ Q. Thus, r1 /∈ Q implies that rn2 ∈ Q for some n ∈ N.
Hence (r2/s2)

n = rn2/s
n
2 ∈ S−1Q. Hence S−1Q is a primary ideal. In addition, as Q is

P -primary, it follows from Proposition 6 that RadS−1Q = S−1RadQ = S−1P , whence
S−1Q is an S−1P -primary ideal of S−1R.
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(2) It suffices to fix a prime ideal P of R disjoint from S and show that the extension
map e induces a bijection from the set I consisting of P -primary ideals of R to the set
J consisting of S−1P -primary ideals of S−1R. It follows from part (1) that the map
e : I → J is well defined. In addition, the contraction map c : J → I is also well
defined because being primary is preserved under taking homomorphic inverse images
(check this!). As e ◦ c is the identity of J , we are done once we argue that c ◦ e is
the identity of I . To do so, fix Q ∈ I . We already know that Q ⊆ c(e(Q)). For the
reverse inclusion, take r ∈ c(e(Q)) and write r/1 = q/s for some q ∈ Q and s ∈ S.
Then s′(sr − q) = 0 for some s′ ∈ S, and so (s′s)r ∈ Q. Since no power of s′s belongs
to Q, the fact that Q is primary ensures that r ∈ Q. Hence c ◦ e is the identity of I ,
as desired. □

Exercises

Exercise 1. Let R be a commutative ring with identity. Prove that

Rad(I + J) = Rad(Rad I +Rad J)

for any ideals I and J of R.

Exercise 2. Let k be a field. Consider the ideals I = (x2 − y) and J = (x2 + y) of the
polynomial ring k[x, y].

(1) Argue that both I and J are prime ideals.

(2) Argue that I + J is not a radical ideal provided that k has characteristic zero
(or different from 2).

(3) Conclude that the addition of radical ideals may not be a radical ideal, even
inside a Noetherian ring.

Exercise 3. Let R be a commutative ring with identity, and let I be a radical ideal
of R. Show that for any x, y ∈ R with xy ∈ I, the following equality holds:

I = Rad(I +Rx) ∩ Rad(I +Ry).

Exercise 4. Let R be a commutative ring with identity. For any ideal I of R, prove
that the following conditions are equivalent.

(a) I is a radical ideals.

(b) For each r ∈ R, if r2 ∈ I, then r ∈ I.

Deduce that if R is a UFD, a nontrivial principal ideal (a) is radical if and only if a
is a squarefree.
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Exercise 5. Let R be a commutative ring with identity, and let I be a proper ideal
of R. Prove that the following conditions are equivalent.

(a) Rad I is a prime ideal of R.

(b) There exists a unique minimal prime ideal over I.

(c) For all r, s ∈ R with rs ∈ I, there exists n ∈ N such that either rn ∈ I or
sn ∈ I.

If I satisfies the previous conditions, then I is called semiprimary. Assuming that R
is a UFD and x ∈ R is a nonzero nonunit, prove that the ideal (x) is semiprimary if
and only if x is associate to a power of a prime element of R.

Exercise 6. Let k be a field, and consider the ideal I = (x, y2) of k[x, y].

(1) Prove that I is a primary ideal with Rad I = (x, y).

(2) Argue that I is not a power of (x, y).

(3) Deduce that primary ideal may not be a power of a prime ideal (even in the
context of Noetherian rings).

Exercise 7. Let k be a field, and consider the ideal I = (x2, xy) of k[x, y].

(1) Prove that Rad I = (x).

(2) Argue that I is not a primary ideal.

(3) Deduce that ideals with prime radical may not be primary (even in the context
of Noetherian rings).

Exercise 8. Let R be the subring of all polynomials in Z[x] having their coefficients
corresponding to x divisible by 3. Show that P = (3x, x2, x3) is a prime ideal of R
satisfying that P 2 is not primary. Deduce that powers of prime ideals may not be
primary.
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